The Jurassic System of Thailand
Meesook A. & Sha Jingeng

泰国的侏罗系
A.米苏克 沙金庚 / 编著

中国科学技术大学出版社
University of Science & Technology of China Press
The Jurassic System of Thailand
Meesook A. & Sha Jingeng

Copyright © 2010 University of Science and Technology of China Press
96 Jinzhai Road
Hefei, Anhui
P. R. China
Printed in Hefei

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, without the prior written permission of the copyright owner.

图书在版编目(CIP)数据

泰国的侏罗系 = The Jurassic System of Thailand; 英文/(泰)米苏克, 沙金庚编著. 一合肥: 中国科学技术大学出版社, 2010.8
(第八届国际侏罗系大会地层丛书)
ISBN 978-7-312-02545-7

Ⅰ. 泰… Ⅱ. ①米… ②沙… Ⅲ. 侏罗纪一地层 研究一泰国 一英 Ⅳ. P534.52

中国版本图书馆CIP数据核字(2010)第 140763 号

出版发行 中国科学技术大学出版社
地址: 安徽省合肥市金寨路 96 号, 邮编: 230026
网址: http://press.ustc.edu.cn

印刷 安徽华隆纸业集团瑞隆印务有限公司
经销 全国新华书店
开本 787mm×1092mm 1/16
印张 8.75
字数 212 千
版次 2010 年 8 月第 1 版
印次 2010 年 8 月第 1 次印刷
定价 89.00 元
PREFACE

The Jurassic period (200～145 Ma) witnessed a number of important geological, geographical, climatological, biological and metallogenical events happened globally.

During the Jurassic, China and environs as a domain was bordered by the western palaeo-Pacific in east and by the Tethys in west, and it was connected to Russia in north and located at the junction between the western palaeo-Pacific and northeastern Tethys. The Jurassic rocks of China and environs are therefore the largest geological body which has recorded various geological events happened in the Tethyan, subboreal and palaeo-Pacific realms both in marine and non-marine systems.

The International Jurassic Congress is an international scientific forum on the Jurassic held once every four years sponsored by the International Subcommittee on the Jurassic System. The Jurassic experts and students from around the world gather together to present their recent work and research results on the topics of geology, stratigraphy, palaeontology, palaeobiology, palaeogeography, palaeocology, palaeoclimatology, sedimentology, geochemistry, palaeomagnetism, tectonics, astronomic geology, and mineral and energy resources, as well as ideas on geosciences education and geoheritage protection, to predict the Earth’s future, and to discuss the international collaborations focus on such issues as challenges of global change.

The 8th International Jurassic Congress will be held in China in August of 2010. To provide a better introduction for all the congress participants and colleagues worldwide about the current study on the Jurassic in China and environs, and to highlight the major progresses in global marine and non-marine Jurassic studies made by the Chinese and Asian Jurassic workers, we have compiled a series of books on the Jurassic stratigraphy, consisting of five books, including “The terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China”, “The Jurassic System of northern Xinjiang, China”, “Outline of the Jurassic and Cretaceous Systems in western Liaoning, NE China”, “The Tethyan Jurassic of southern Tibet, China”, and “The Jurassic System of Thailand”. The first two books mainly describe the non-marine Jurassic and part Triassic strata of the largest basins in Sichuan of southwestern China and northern Xinjiang of western China, the third one outlines the Jurassic and Cretaceous strata that yield the famous Jehol Biota and other lagerstätten in western Liaoning Province, northeastern China, the fourth one introduces the Tethyan marine Jurassic in southern Tibet, southwestern China (to be published after the congress), and the last one describes the marine and non-marine Jurassic strata, faunal associations, palaeocology, palaeoenvironment, tectonics and palaeogeography of
Thailand.

This series of stratigraphic books are dedicated to the 8th International Congress on the Jurassic System and the UNESCO-IUGS International Geoscience Programme IGCP 506. This work is supported by the National Natural Science Foundation of China, the Ministry of Science and Technology, PRC, the Chinese Academy of Sciences and the Shehong County People’s Government of Sichuan Province. We sincerely thank Professors Chen Peiji, Meng Fansong, Zhang Shiben, Zhang Sengui, Lu Huinan and Zhang Yunbai for critically reading the manuscript and providing helpful discussions and comments for the authors. Special thanks are due to Prof. Zhang Sengui, the executive editor, for enormous assistance in editing.

We would like to finally thank all the related institutions, referees, authors and editors for their support and apologize for mistakes in the books due to hasty organization and preparation as well as limited time.

Sha Jingeng¹,², Shi Xiaoying³, Zhou Zhonghe⁴ and Wang Yongdong⁵

1) Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, P. R. China. E-mail: jgs@nigpas.ac.cn; ydwang@nigpas.ac.cn
2) State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing 210008, P. R. China
3) China University of Geosciences, Beijing 100087, P. R. China. E-mail: shixybx@cugb.edu.cn
4) Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, P. R. China. E-mail: zhonghe@yeah.net

August 19th, 2010
CONTENTS

PREFACE .................................................................................................................. i

ABSTRACT .............................................................................................................. iii

Chapter 1 INTRODUCTION ...................................................................................... 1
   I. General information ......................................................................................... 1
   II. Marine Jurassic rocks of Thailand ................................................................. 1
   III. Jurassic Locality ............................................................................................ 2

Chapter 2 PREVIOUS WORKS ............................................................................... 9

Chapter 3 REGIONAL GEOLOGIC SETTING ................................................... 13
   I. Maesot-Umphang area, Tak Province, northwestern Thailand .................... 13
   II. Phop Phra area, Tak Province, northwestern Thailand ............................. 16
   III. Chumphon area, Chumphon Province, Peninsular Thailand ..................... 17
   IV. Thung Song-Khlong Thom area, Nakhon Si Thammarat and Krabi Provinces, Peninsular Thailand .............................................................. 17
   V. Ao Luk-Plai Phraya area, Krabi and Surat Thani Provinces, Peninsular Thailand ....................................................................................... 19

Chapter 4 MARINE JURASSIC ROCKS OF NORTH-WESTERN THAILAND ...... 21
   I. Jurassic of the Khun Yuam-Mae Hong Son area .......................................... 21
      1. Lithostratigraphy ....................................................................................... 21
      2. Fauna and age of the Khun Yuam-Mae Hong Son area ........................... 24
   II. Marine Jurassic of the Mae Sot area ............................................................. 24
      1. Lithostratigraphy ....................................................................................... 24
      2. Fauna and age of the Hua Fai Group in the Mae Sot area ....................... 32
   III. Marine Jurassic of the Phop Phra area ....................................................... 32
      1. Lithostratigraphy of the Phop Phra area ................................................ 32
      2. Fauna and age of the Phop Phra area ....................................................... 33
   IV. Marine Jurassic of the Umphang area ......................................................... 35
      1. Lithostratigraphy ....................................................................................... 37
2. Fauna and age of the Umphang area ........................................... 41
V. Marine Jurassic of the Kanchanaburi area ...................................... 41

Chapter 5  MARINE JURASSIC OF PENINSULAR THAILAND ...................... 45
I. General Information ........................................................................ 45
II. Marine Jurassic of the Chumphon area ............................................ 48
   1. Lithostratigraphy ....................................................................... 48
   2. Fauna and age of the Chumphon area ........................................ 48
III. Marine Jurassic of the Nakhon Si Thammarat area .......................... 50
   1. Lithostratigraphy of the Thung Song-Khlong Thom area ............. 50
   2. Fauna and age of the Thung Song-Khlong Thom area ................... 50
IV. Marine Jurassic of the Krabi area ................................................... 51
   1. Lithostratigraphy of the Ao Luk-Plai Phraya area ....................... 51
   2. Fauna and age of the Ao Luk-Plai Phraya area ............................ 51

Chapter 6  NON-MARINE JURASSIC OF NORTHERN, NORTHEASTERN,
            EASTERN AND PENINSULAR THAILAND ................................... 53
I. General Information ........................................................................ 53
II. Non-marine Jurassic in the Khorat Plateau, Northeastern Thailand .... 55
III. Non-marine Jurassic in northwestern Thailand ............................... 61
IV. Non-marine Jurassic in eastern Thailand ....................................... 62
   1. Laem Sing Formation .................................................................. 62
   2. Phu Kradung Formation ............................................................ 63
V. Non-marine Jurassic in peninsular Thailand ................................... 63
   1. Thung Song-Khlong Thom area of Nakhon Si Thammarat and Krabi
      Provinces ................................................................................... 64

Chapter 7  FAUNAL ASSOCIATIONS, PALEOECOLOGY AND PALEOENVIRONMENT ................................................................. 67
I. General Information ........................................................................ 67
II. Faunal Associations, Paleoecology and Paleoenvironments ............. 68
   1. Bositra Facies ........................................................................... 69
   2. Benthic Bivalve Facies .............................................................. 70
   3. Mixed Facies ............................................................................ 77
   4. Ammonite Facies ....................................................................... 78
   5. Brachiopod Facies ..................................................................... 79
Chapter 1

INTRODUCTION

I. General information

Generally, Jurassic sedimentary rocks of Thailand consist of marine, brackish, and non-marine facies. Marine Jurassic strata are widely distributed in northern, western and peninsular Thailand, whilst non-marine and brackish rocks are widespread in northeastern and southern peninsular Thailand, respectively. These Jurassic rocks are regionally described herein which have been divided as the north-western, northeastern, southeastern, and peninsular regions. Although numerous investigations have been conducted over the last sixth decades in these regions, detailed stratigraphy of the marine Jurassic rocks has been carried out recently by Meesook and Grant-Mackie (1996), Meesook et al. (2006), and recently by Saengsrichan (2007) and Saengsrichan et al. (2009).

In the following account, geographic place names are given in Latin script and include prefixes meaning village (Ban), secondary administrative centre (Amphoe), provincial administrative centre (Changwat), Mountain (Doi), and stream (Huai).

II. Marine Jurassic rocks of Thailand

Brackish to marine Jurassic strata are found in north-western and peninsular Thailand with many lithostratigraphic units and faunal aspects. Based on the physical continuity of lithologic units supported by data from ammonites, bivalves, vertebrates, and some microfossils, new correlations are given. The results provided contribute to correlation within the country and to an improved understanding of the sedimentary and tectonic evolution of the Jurassic rocks of Thailand.

The stratigraphic units described below have already been introduced informally (Meesook & Grant-Mackie, 1994) and the formal definition and description provided later (Meesook & Grant-Mackie, 1996). The correlations given here make use of their data and a further study will document full details of the marine molluscan fauna, including the erection of a number of new species. Additional units are described from peninsular
Thailand where brackish to marine rocks have recently been found. Distribution of marine Jurassic units in Thailand is shown in Figure 1.1.

Mainland Southeast Asia is divided into three major tectonic terranes; Western Burma, Shan-Thai, and Indochina (Burrett, 1974; Stauffer, 1974; Hutchison, 1975; Gatsinsky et al., 1978; Ridd, 1980; Mitchell, 1981; Bunopas, 1982; Burrett et al., 1990). Thailand is made up of both the Shan-Thai terrane in the west and the Indochina terrane in the east. The Jurassic areas are located in the Shan-Thai terrane west of the Nan Suture Zone, which was created during Late Triassic by continent-continent collision with the Indochina terrane to the east (Bunopas, 1982; Hahn et al., 1986). The main area investigated is a long narrow N-S trending strip running along the Thailand-Myanmar border that occupies more than 7,000 km² of the Mae Hong Son, Tak and Kanchanaburi areas, with three isolated areas, the Chumphon, Nakhon Si Thammarat, and Krabi Provinces in southern peninsular Thailand (see Figure 1.1).

Geologically, strata in western and peninsular Thailand range from Precambrian to Quaternary in age. Regional stratigraphic correlations in Thailand have recently been summarized (Bunopas, 1992).

As mentioned earlier, Mesozoic sequences in Thailand can be lithologically subdivided into three main facies: marine, brackish, and the younger continental. Jurassic marine to brackish facies have been reported in the west and south. These sediments are distributed in three basins: the Mae Hong Son-Kanchanaburi Basin in the northwest and west; the Chumphon Basin in the northern part of the peninsula; and the Nakhon Si Thammarat and Krabi in the south. The location and extent, orientation of Jurassic strata in each basin and present relationship between basins resulting from both strike-slip and normal faulting are shown in Figure 1.2. Of these basins, the Mae Hong Son-Kanchanaburi Basin has the most fully developed and widely distributed marine Jurassic. Fossils cited here have been collected during fieldwork by the senior author and colleagues.

### III. Jurassic Locality

Six localities of marine Jurassic rocks are distributed in the north-western and southern parts of Thailand i.e., the Khun Yuam-Mae Hong Son, Mae Sot-Umphang and Phop Phra, Chumphon, Thung Song-Khlong Thom, and Ao Luk-Plai Phraya areas, situated in Mae Hong Son, Tak, Chumphon, Nakhon Si Thammarat and Krabi Provinces, respectively (Figure 1.3).

The Khun Yuam-Mae Hong Son area was previously thought to be covered only by marine Triassic rocks trending north-south along the Thailand-Myanmar border. In 1985, Charoenprawat et al. discovered marine Jurassic rocks at Ban Pa Lan and its vicinity, the Muang and Khun Yuam Districts of Mae Hong Son Province. Since then, Mee-
Figure 1.1 Marine Jurassic distribution of Thailand including rock units
(modified after Meesook & Grant-Mackie, 1996)
sook et al. (1985), and Meesook and Grant-Mackie (1994, 1996) have studied the rocks in terms of stratigraphy and paleontology. As a result, many Jurassic bivalves, ammonites and microfossils have been found and can be correlated with those of the Mae Sot-Umphang, and Phop Phra areas. The Mae Sot-Umphang and Phop Phra areas of Tak Province, northwestern Thailand, approximately 2,500 km², are selected to be the first two pilot areas of the country for studying marine Jurassic faunas because of their abundance and diversity. The areas have been investigated by many geologists and palaeontologists both Thai and overseas for many years. In the Mae Sot area, marine Jurassic rocks in the eastern and western parts of the Mae Sot Basin, are rich in fossils previously living in very shallow-marine environments, including bivalves, ammonites, corals, gastropods, foraminifera etc. The rocks are also well exposed in the northwest and southeast portions of Phop Phra District covering an area approximately 700 km² and extending into Myanmar. Jurassic rocks are confined to the western part along the Thailand-Myanmar border in the Umphang area.

The sedimentary rocks in these areas consist mainly of marine to brackish clastic facies. The name “Umphang Group” was proposed (Meesook, 1994) for the rocks in this area and this group can be subdivided lithostratigraphically into four formations, in ascending order: Klo Tho, Ta Sue Kho, Pu Khloc Khi, and Lu Kloc Tu formations. In the Mae Sot area, the Hua Fai Group represents a Jurassic sequence, consisting of marine clastic rocks. The group can be divided into three; Khun Huai, Doi Yot, and Pha Deformations, in ascending order (Meesook, 1994). In Chumphon Province of Peninsular Thailand, marine to non-marine Cretaceous rocks (the Thung Yai Group) are composed mainly of continental red beds with occasional brackish-marine mudstones, siltstones and limestones. The Jurassic areas are located in Pathiu and Tha Sae Districts, Chumphon Province of approximately 700 km². The marine Jurassic rocks in the Chumphon Basin are also recognised as containing one of the richest faunal assemblages for the non-marine to marine in Thailand. However, these faunal assemblages are undetermined, especially in the area under the present investigation of Chumphon, Nakhon Si Thammarat and Krabi Provinces.

The non-marine (brackish-freshwater-continental) Jurassic rocks in peninsular Thailand have been long known as “continental red beds”, most of which are distributed from Chumphon Province to the north, Nakhon Si Thammarat, and Krabi Provinces to the south, with particular emphasis on the Thung Song-Klong Thom area of Nakhon Si Thammarat and Krabi Provinces, and the Ao Luk-Plai Phraya area of Krabi and Surat Thani Provinces. The Krabi-Klong Thom sequences consist mainly of marine to brackish and continental red beds. Lithostratigraphically, the Thung Yai Group (Raksaskulwong, 2002) is proposed for the mentioned rocks and this can be subdivided into four formations; Klong Min, Lam Thap, Sam Chom and Phun Phin formations, in ascending order. Of these, the Khlong Min Formation of Jurassic age is thought to have been
Figure 1.2 Major tectonic units and distribution of the Jurassic-Cretaceous rocks and basins with some major geological structures (modified after Meesook, 1994; Charusiri et al., 2002)
Figure 1.3  The study areas of marine Jurassic rocks of Thailand mentioned in text (after Mcesook et al., 2006)
REFERENCES


Braun E Von & Jordan R. 1976. The stratigraphy and palaeontology of the Mesozoic sequence in the Mae Sot area in western Thailand. *Geol Jb.*, B 21; 5–51


Charoenprat A, Dhumduisdon V, Sripongpan P & Paksanath N. 1985. Geology of Changwat Mae Hong Son (4547-I) and Ban Huai Pong (4547-II) scale 1: 50,000. Geological Survey Division, Department of Mineral Resources, Bangkok, Thailand; 1–24 (unpubl.) (in Thai)


Chonglakmani C. 1981. The systematic and biostratigraphy of Triassic bivalves and ammonoids of
Thailand [Ph.D. Thesis]. Geology Department, University of Auckland, New Zealand; 1~504
Chonglakmani C. 1990. Note on the continental deposits of Peninsular Thailand with a description of some conchostracans. Oil and Gas Geology, 2; 31~37
Cotter G de P. 1924. The oil shales of eastern Amherst, Burma, with a sketch of the geology of the neighbourhood. Rec Geol Surv India, 55; 282~286
Dechaseaux C. 1941. Pinnidés jurassiques de l’est du bassin de Paris. J Conchyliol, 84(1); 34~52
Elliott G F. 1983. Distribution and affinities of the Jurassic dasycladalean alga Sarfatiella. Palaeontology, 26(3); 671~675
and their resource potential. *Soc Econ Paleontol Mineralogists Short Course*, 19; 101–126


Gatinsky Y G, Mischina A V & Vinogradov I V. 1978. The main metallogenic belts of Southeast Asia as the result of different geodynamic conditions and interference. In: Nutalaya P ed. *Proceedings of the Third Regional Conference on Geology and Mineral Resources of Southeast Asia (GESEA III)*. Bangkok, Thailand; 313–318


Hayami I. 1960. Two Jurassic Plectronypods from West Thailand. *Trans Proc Palaeontol Soc Japan*, n s, 38; 1~284

Hayami I. 1972. Lower Jurassic Bivalvia from the environs of Saigon. *Geol Paleont SE Asia*, 10; 179~230

Heim A & Hirschi H. 1939. A section of the mountain ranges of northwestern Siam. *Ecolo Geol Helv.*, 39; 1~16


Ishida K, Nanba A & Hirsch F. 2006. New micropalaeontological evidence for a Late Triassic Shan-Thai orogeny. *J Geosci.*, 10(3); 181~194


Javanaphet C. 1969. Geological map of Thailand, scale 1:1,000,000. Department of Mineral Resources, Bangkok, Thailand

Jeffries R P S & Minton P. 1965. The mode of life of two Jurassic species of "Posidonia". *Palaeontology*, 8; 156~185


Kauffman E G. 1981. Ecological reappraisal of the German Posidonienschiefer (Toarcian) and the stagnant basin model. In; Gray J, Boucot A J & Berry W B N eds. Communities of the Past. Stroudsburg; Hutchinson and Ross Publishing Company. 311~381

119

Kemper E. 1987. Das Klima der Kreide-Zeit *Geol Jb.*, A 96; 1~349

Kemper E, Maronde H & Stoppel D. 1976. Triassic and Jurassic limestone in the region northwest and west of Si Sawat (Kanchanaburi Province, western Thailand). *Geol Jb.*, B 21; 93~127


Komalarjun P & Sato T. 1964. Aalenian (Jurassic) ammonites from Mae Sot, northwestern Thailand. *Geol Palaeont SE Asia.*, 1; 237~251

Kozai T, Hirsch F, Ishida K & Meesook A. 2006. Faunal affinity of Toarcian-Aalenian (Early Jurassic) bivalve from Mae Sot and Umphang (Tak Province), Northwestern Thailand. *J Geosci.*, 10 (3); 205~215


Kriz J & Soukup J. 1975. Life habits and preservation of Pinna decussate (Bivalvia) from the Upper Cretaceous of Bohemia. *Věstník Ust Geol.*, 50(1); 47~50


MacLeod K G & Hoppe K A. 1992. Evidence that inoceramid bivalves were benthic and harbored chemo-synthetic symbionts. *Geology.*, 20; 117~120

Manceño M O. 1991. The succession of Early Jurassic brachiopod faunas from Argentina; Correlations and affinities. In: Mackinnon D I, Lee D E & Campbell J D eds. Brachiopods through Time. Rotterdam; A A Balkema. 397~404


Meesook A, Sha J G, Yamee C & Saengsrichan W. 2009. Faunal associations, paleoecology and paleoenvironment of marine Jurassic rocks in the Mae Sot, Phop Phra, and Umphang areas, Western Thailand. *Sci China (Ser D)*, 52(12); 2001–2023

Meesook A, Suteethorn V & Sareerat S. 1985. Geology of Ban Chi Cho Chi (4740 IV), Ban Pa La Tha (4740 I), Ban Klo Tho (4741 III), and Amphoe Umphang (4741III) Quadrangles scale 1:50,000, Amphoe Umphang, Changwat Tak, western Thailand. Stratigraphic Correlation Research Unit. Report (2). Geological Survey Division, Department of Mineral Resources, Bangkok. 40, 35 and 36 (in Thai)


Panjasawatwong Y. 1991. Petrology, geochemistry and tectonic implications of the igneous rocks in the Nan Suture, Thailand, and an empirical study of the effects of Ca/Na, Al/Si and H₂O on plagioclase-melt equilibria at 5–10 kb pressure [Ph. D Thesis]. Australia; University of Tasmania. 1–239

121


Pia J. 1930. Upper Triassic fossils from the Burmo-Siamese frontier- A new Dasycladaceae *Holosporella siamensis* n. g. n. sp. with a description of the allied genus *Aciculella* Pia. *Rec Geol Surv India*, 63(1); 177~181


Read J F. 1982. Carbonate platforms of passive (extensional) continental margins; types, characteristics and evolution. *Tectonophysics*, 81; 195~212

Reineck H E. 1984; Aktuogeologische klastischer Sedimente. Frankfurt a.m.; Kramer W. 1~348


Saengsrichan W. 2007. Sedimentary facies and stratigraphy of the marine Jurassic Hua Fai Group in Mae Sot-Phop Phra Basin, Changwat Tak, Thailand [M.Sc. Thesis]. Chulalongkorn University, Bangkok, Thailand; 1~163

Saengsrichan W, Sha J G, Meesook A & Hisada K. 2009. Lithostratigraphy and petrography of marine Jurassic rocks in the Mae Sot area, Tak Province, western Thailand; Implications for depositional environment and tectonics. *GFF*, 131; 1~21

Sato T. 1961. Une ammonite aalenienne de la region de Mae Sot, Thailande. *Japanese J Geol Geogr*, 32(1); 137~139

Sato T. 1975. Marine Jurassic formations and faunas in Southeast Asia and New Guinea. *Geol Palaeo-
ont SE Asia., 15; 151~189
Sellwood B W. 1972. Regional environmental changes across a Lower Jurassic stage-boundary in Britain. *Palaeontology*, 15; 125~157
Sha J G, Smith P L & Fürsich F T. 2002. New Jurassic Ostreoida (Bivalvia) from China (Tanggula Mountains, Qinghai ~ Xizang Plateau) and their paleobiogeographic context. *J Palaeont.*, 76(3); 431~446
Speden I G. 1967. Revision of Syncyclonema (Upper Cretaceous) and comparison with other small pectenid bivalves and Entolium. *Postilla, Peabody Mus Nat Hist Yale Univ.*, 125; 1~296

Teerarungsigul N. 1999. Lithostratigraphy of non-marine Mesozoic rocks; Thung Yai-Khlong Thom area, in southern part of Thailand [M.Sc. Thesis]. Geology Department, Chulalongkorn University, Bangkok, Thailand. 1–190


Vajda V. & Solakius N. 1999. Palynomorphs, foraminifera and calcisphaerites from the greensand-limestone transition at Arnager, Bornholm; evidence for the late Cenomanian to early Coniacian transgression. GFF, 121; 281–286


Wecrahong A. 2007. Stratigraphy and Paleontology of marine Triassic rocks in Amphoe Mae Sot Phop Phra, Changwat Tak, Thailand [M.Sc. Thesis]. Chulalongkorn University, Bangkok, Thailand. 1–133


Wolff W. 1973. The estuary as a habitat. An analysis of data on the soft-bottom macrofauna of the estuarine area of the river Rhine, Meuse, and Schelted. Zool Verh., 126; 1–242


Younge C M. 1968. Form and habit in species of *Malleus* (including the “Hammer oysters”) with comparative observations on *Isognomon isognomon*. *Biol Bull*, 135(2); 378~405
